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The Spherical Limit for n-Vector Correlations 
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We investigate the n --~ o~ limit of the n-vector model single-spin and pair- 
spin correlation functions. In this limit we show that the correlation func- 
tions become those of the corresponding spherical model. 

KEY W O R D S :  Spin correlat ions; n-vector  model ;  spherical model ;  
n --~ oo limit. 

1 .  I N T R O D U C T I O N  

The "identification ''(1~ of the spherical model (2~ as the infinite-spin-dimen- 
sionality limit of  the n-vector model has added greatly to the significance of 
this unique statistical mechanical model. However, the "identification" is 
far f rom complete, since only the equivalence of the free energies in zero field 
has been established rigorously. (3~ Even so, it is widely believed that in this 
limit other thermodynamic functions should correspond. Stanley ~1/ gives 
evidence to show that the susceptibilities should agree and many other 
authors simply assume that the correlation functions actually coincide. It  
is principally to this latter problem of correlations that we address ourselves 
in this paper. 

Our approach to this problem originates f rom a recent paper by Gates 
and Thompson (4~ in which correlation functions are investigated in the 
infinite-spatial-dimensionality limit. In essence the strategy is to introduce 
a nonuniform field and then to calculate the correlations from the field 
derivatives of  the free energy. In accord with this program, we generalize 
the theorem of Ref. 3 to include a nonuniform field in the following sec- 
tion. In Section 3 the correlations are obtained by differentiation and the 
justification of the necessary interchanges of  limits and differentiations is 
outlined. 
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2. S P H E R I C A L  L I M I T  FOR A N O N U N I F O R M  FIELD 

Consider an n-vector model with a nonuniform field, that is, a lattice 
system of N, n-dimensional classical spins, S~ = (S~1, S~2,..., S~,), i = 1, 2,..., N, 
with length 

iis,  : 

and described by the Hamiltonian 
N N 

3f  = - � 8 9  ~ p~yS,.S,- ~ H,.S~ (2) 
i,j=l i=l 

We include the self-interacting terms in the Hamiltonian for convenience 
and set p, = po large enough to ensure that the matrix O is positive definite. 
Furthermore, we choose the field H~ at each site i such that 

H~ = ni/2h~, i = 1, 2,..., N (3) 

in order to guarantee a field contribution to the limiting free energy. The 
limiting free energy is given by 

F{fl; H,} = lim (Nn)- I  log ZNn{fi; H~} (4) 
N , ~  ao 

where the n-vector partition function is 

f f  ZN'~{3; H~} �9 . . .  dS, exp �89 p,jS,.S, + fl H,.S, (5) 
J J "=  G]=I ' =  

I[Slll = n 112 

The most important feature of the nonuniform field case is that the 
Hamiltonian (2) is no longer translationally invariant, even for transla- 
tionally invariant couplings 

p~j = p(r, - rj) (6) 

This translational invariance of the Hamiltonian is indispensable in the 
proof (a~ that the n-vector free energy approaches the spherical free energy 
in the infinite-spin-dimensionality limit. We cannot therefore expect the 
limiting model in our nontranslationally invariant case to be the usual 
spherical model. 

Taking the lead from Knops, (5~ we consider the generalized spherical 
model defined by the partition function 

QN{fl; z,, H,} = exp.__(~ zi �9 dx, 
\i=l 

x exp (�89 - ~:z~)x~xi + [3 Hix~ (7) 
ki,j= i i=l 
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within a region ~ where the "spherical fields" z~ are large enough to ensure 
that the quadratic form in the exponent is negative definite. The spherical 
fields are to be determined by the individual spherical constraints 

log QN{/3; zi, Hi} = O, c q& i =  1,2 ..... N (8) 

Following Knops, the generalized spherical free energy is 

f{/3; H~} = lira N -1 min log Qu{fi; &, Hi} 
N--* m z t~ , .  ~ 

(9) 

where QN{/3; &, Hi} given by (7) factors explicitly as [see (19)] 

---~ e 1 2 ON{/3; &, Hi} Q~v{/3 ; zi, 0} xp -~fi (Z - �89 I H, Hy 
k t ,1=1 

= 7r N/2 exp zi det(Z - �89 

(10) 

[ N 1 x exp 1/32 ~ ( Z -  �89 (11) 
i ,1=1 

with the matrix Z given by 

Zij = z~ 8~s; i , j  = 1, 2,..., N (12) 

The theorem we want to prove can now be formulated. 

T h e o r e m .  Under the condition (3) the limiting n-vector free energy 
(4) is given in terms of the spherical partition function (7) by 

F{/3; H,} = lim min(Nn) -~ log ]..[ Q~v{/3; z,, H~,} (13) 
N , n ~ m  z i ~  o~=I 

To prove the theorem we will obtain upper and lower bounds that 
coalesce in the stated limit. 

Lower Bound .  The derivation of the lower bound shadows that of 
Knops/5~ Define 

Zn'~{fl; a~, H~} . . . .  1--[ dS, exp �89 pijS,-Sy +/3  HcSi  
i , ] = l  

tlStrl = n l / 2 2 t  (14) 
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so that by direct calculation 

--oo ~= i  

[ N ] 
x exp �88 2 ~ ( Z -  �89162 (15) 

i,I=1 

Increasing the integrand in (15) to 

exp - ~  a~ 2 max ZN~{[~; 2q, H~} exp - n  z~'t~ 2 (16) 
~=1 0<"%1<~176 ~=i  

with zi' = z~ - rr/2n, we obtain 

max [Z~v"{fl; A,, H,} exp(n ~ ( z , - z , ' ~ ) ) ]  
~ ~=i 

~" 1~, ,-I H H ] >i n-m2QN{f i ;  z , ,  O} '~ exp �88 2 ~ ,  ( Z  - -~pp),j ' "  Ji (17) 
L.f=l  J 

Now, by adjusting the z's in N so that the maximum occurs at A~ = 
,~2 . . . . .  iN = 1, then replacing the right-hand side by its minimal value 
in N, and finally taking the limits N, n -+ 0% we obtain straightforwardly 

lira ( N n ) -  1 log ZN~{fi; H,} 

t> lira max[ 1 log a.{~; z,, 0} 
. . . .  ~ [N 

N ,] 
+ ~n ~ (Z-- �89 

L j = I  

(18) 
Upper  Bound. The derivation of the upper bound is based on the 

welt-known identity 

exp(�89 , , ~  p~jS~.Sj) 

= (2,~)-N"'2(det p)-"'2 f .~.. f ~-I dx, 
_~ I=i 

x exp --�89 p~lx~.xj + /~1t2 xi.S~ (19) 
g = l  

which is valid for any positive-definite matrix p and n-dimensional vectors 
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S~. Using this idemity, we have from (5), after an interchange in orders of 
integration, 

= o~ N exp(- �89 ~ p~x~.x;) Zu"{/3; I I~} (2rr)- x~'2(det p)- ~i2 f .-. f 1~  dx~ 
O_ coOi=l ~ , / = 1  

x --- dS, exp /31f2 ~ (x, +/3112H,).S~ (20) 
~ = 1  

IIS~ll= ~ 112 

Translation of the "local fields" leads to our final representation 
N 

ZN~{/3; Hi} = (2~r)-N~/2(det p)-~/2 f ... f H dx~ 
J--oo i=1 

x exp - �89 ~ Ojl(x~ - ~3~H0.(x~. - fi~2Hr 
k ~,i=1 

/3 3~xi.xj �9 qh(/3~Zx0 (21) 
2z~ 

where 
( .  7 

~b~(y) _ [exp(-~yn2/4z~)] J . . . /  exp(y.S) dS (22) 
IIlgt[ = n 1/2 

Now, to obtain an upper bound, we replace each qh in (21) by the 
majorization [Knops, Eq. (2.25)] 

q~ <~ A~ exp[(n/2)(2z~ - 1 - log 2z~ + e~)] 
where 

A~ = 2~"t2n(~-l~'2/r(n/2) 
and 

~ = n-~(2 + 2 log 2z0 

The remaining integral in (21) can be recast into the form 

(27r)-Nnf2(detp)-~'2(exp( -�89 ~,J~--1 p~iH"H~)) 

x f .7. f dNxexp _�89 p51 /3 8,j x,.xj 
_ ~ 1 2zi 

(23) 

(24) 

(25) 

+/31/2 ~ #~lx~.Hi 
L I= I  

(26) 
N 

= [det(I-�89 -�89 ~ p~IH,.I-Ij 
~,/=i 

+ �89 ~ (p-1 _ �89 palH~, o~IH~ 
L j = I  1, l = 1  

(27) 
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The Gaussian integrals have been evaluated using (19), with the z, chosen 
such that the matrix I - �89 1 is positive definite, that is, z~ e ~.  

The matrix of the quadratic form in the exponent of (27) can now be 
written 

A - _ p - 1  + p-~(p- ,  + �89 = �89 - �89 (28) 

This identity is easily proved by expanding the matrix expression A(Z - �89 
Combining (22)-(28), we have 

E 1 ZN~{/?; H~} ~< [de t ( / -  �89 -~/2 exp �88 ~ (Z - �89 
i , j  = I 

x (A~) N exp �89 (2z~ - 1 - log 2z~ + e~) (29) 

Finally, minimizing the right-hand side with respect to the z's and applying 
Stirling's formula to A~ we obtain 

lim (Nn) -~ logZN~{fl; I-I~} 
N ,  n - ' *  co 

~< lim min[ 1 ( 1 ) N,.-.oo ~ k - - 2  N-~ log det Z - ~ tip 

/32 ~ ( 1 )~ 1 1 N _ ~  I (30) + ~  Z - 7 2 f l p  H~.H s + ~ l o g ~ r  + z~ 
L J = I  " I = i  

As argued by Knops, (~> the error term �89 ~ ~ z~ vanishes in the limit. 
In view of (10) and (11) and the lower bound (18), the theorem is 

established. 

3. T H E  C O R R E L A T I O N  F U N C T I O N S  

First let us rewrite the theorem (13) in the form 

F{fl; H~} = lim Ffl~{fl; h~} 

where 

1 N 1 N  _ 2~log det(Z,  1tip) FN'~{fl; h~} = log rr + ~--~1 z~* 

/32 ~- 1 -1 
+ 4N,.jz.:I (Z*-T2f lP) , ,  h''hs 

We have assumed that the minimum in (13) is attained for 

z~ = z,*{k} 

in terms of the scaled field (3). 

(31) 

(32) 

(33) 
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Consider now the limit of the n-vector single-spin correlation function 

lira n112<S~), = lim (Nn) -1 logZN"{/3; h~} (34) 

Since log Z~'~{fi; lb.) is a convex function of h~,, the right-hand side of (34) 
is equal to 

lim (Nn)-I log ZN~{/3; h,) (35) 

wherever (35) defines a continuous function of h~,. This theorem on the inter- 
change of limits and differentiation is due to Griffiths. (6~ Note also that, be- 
cause the limiting n-vector free energy F{fi; h~} is a convex function of h~, 
the derivative (35) is a monotonic increasing function and thus is continuous 
everywhere except, possibly, at a countable number of jump discontinuities. 
Now, by our theorem (31), we can write (35) as 

3 
lira Fu'~{fl; h~} (36) 

0 
= lim FN"{/3; h~) (37) 

if we again invoke Griffiths' theorem. (6~ The limit (37) can now be readily 
calculated using the facts that 

G{z~*(h~'~)'h~)= ~ ~G Ozk~* ~h~, 
~h~ z~ const ~=1 ~Z~* Ohi, + (38) 

and 

eFN__.___" = 0, k = 1, 2,..., N (39) 
c3z~* 

We thus obtain 

lim - - F  ~ "h~} l i ra  Z * -  N., - .~  o([3h,~) N {~,  = _ ~ . / ? o ,  h;~ (40)  

I f  we now let each h~, -+ h, it is easily seen that the right-hand side of 
(40) is precisely the generalized spherical single-spin correlation in a uniform 
field H~ = h, (v~ which we denote by <S~>. Moreover, in this h~ ~ h limit, 
by invariance under rotation about a uniform field, the n-vector spin com- 
ponent correlations and, in particular, <S~>, are independent of the value 
of a. Hence we conclude that for a uniform field (H~ = n112h) 

lim ll<S >.ll = lira <s~>~ 2 = lim n~2<s~>~ = <s~> (41) 
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We can now obtain the limit o f  the n-vector pair correlations by con- 
sidering 

lim n((S~Sj,,~,,  - ( S ~ , ~ ( S j , ~ , )  
1~...* oo 

02 
= lim /3 -2 - -  (Nn) -1 logZz~"{/3; h,} (42) 

The previous arguments  lead to the conclusion that  for  a uniform field 

l i m ( ( S , . S j ~  - (S,~,(Sj~,)  = (S~Sj~ - (S ,  X S j )  (43) 
~- -~  oo 

Unfortunately,  we have been unable to find a generalization of  Griffiths' 
Theorem ~6~ to obtain this result with absolute rigor. However,  given that  
the necessary interchanges o f  limits and differentiations are valid, we can 
conclude that  

lim (St.  Sj)~ = (S~Sj)  (44) 
n ~ o o  

by using (41) and the fact that  each (S~), is parallel to the uniform field. 
Finally, we observe that  in a uniform field and for  periodic, trans- 

lationally invariant interactions the generalized spherical model  reduces to 
the mean spherical model.  Moreover ,  if the field is nonzero,  the mean 
spherical correlations agree with the usual spherical model correlations. <8) 
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